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ABSTRACT

Binary testing concerns finding good algorithms to solve
the plass of binary identification problenms. A binary
identification problem has as input a set of objects, including
one marked as distinguished (e.g., faulty), for each object an a
priori estimate that it is the distinguished object, and a set of
tests. .Output is a testing procedure to isolate the
distinguished object. One seeks minimal cost testing procedures
where cost is the average cost of isolation, summed over all
objects. This is a problem schema for the diagnosis problem:
applications occur in medicine, systematic biology, machine fault

location, quality control and elsewhere.

In this paper we extend work of Garey and Graham to
assess the capability of a fast approximation rule, the binary
splitting rule, to give near optimal testing procedures when the
a priori estimates are arbitrary. We find conditions on the test
set such that.the approximation error reduces nearly to that of
the equally likely a priori estimate case of Garey and Graham and
find another upper bound on approximation error for the same test
set conditions which works very well under a priori estimate

assumptions where the first result is poor.




Performance Bounds for Binary Testing

With Arbitrary Weights
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1. Introduction.

The binary testing problem is a special case of a general

diagnosis problem where one seeks to find the true culprit (say,

Pk e it v
e e Al T

% disease) ftom among n candidates. The general problem has been
studied for many years, using Bayesian statistics, decision

tables, information theory and other methods. (See Payne and

| Preece [9), who give a survey of the entire area.) Here we
fi continue an investigation into the, binary testing problem
{é undertaken by Garey and Graham [S5]. (Earlier work on binary
1 testing was done by many, e.g. Chu (1}, Slagle {12},
2 Garey {2,3,4]; related work has been done by Reinwald and

Soland {11}, and, recently, by Moret et al. [8].)

Binary testing is the task of finding good algorithms to

. solve individual binary identification problenms. A binary

i identification problem consists of:

a) a set O of n objects Oyr+++40,, SOMe of which may be

PO C S —v
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distinguished (e.g. faulty) objects:;

b) a corresponding set of n a priori probabilities p; (also

called object weights), satisfying p; > 0 where p; is

regarded as the a priori 1likelihood that o; is a
distinguished object;
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c) a test set 7' = {Tl,...,rm} of m distinct tests over O,

each test T identified with a different subset 8 of O
such that T responds "yes"” if a distinguished object is

in S; otherwise T responds "no".

We henceforth assume that there is precisely one
distinguished object in O. Thug we also stipulate that £ P; = 1.
For any tést T we write T(o) =1 (or 0 € T) iff the distinguished
object is in the subset associated with T; otherwise T(o) = 0 (or
of T). which object actually is the distinguished object
influences neither the specification of the binary identification
problem or its solution (see below), , because which object is

distinguished is considered unknown and we seek a procedure to

isolate it.

Further assumptions we make are that we have an adequate
test set to isolate any object as distinguished, and that all

tests have unit cost of application.

A solﬁtion to.a binary identification problem is a binary
decision tree that is a procedure for applying tests to determine
the dﬁstinguished object. A solution is called a testing
procedure. (The decision tree is also called a solution tree.)
A decision tree is simply a tree graph of the possible paths to
follow to isolate the distinguished object; each path is a
sequence of tests and each arc from a node is chosen by the
outcome of the test that labels the node. The test labeling the
root is always the first test applied. Each leaf is labeled by

A T e SR




ﬁ an object name, which denotes the object isolated by the test
3

3 outcomes on the path to that leaf., (We often shall replace an
,? object name by its object weight at a leaf, whenever clarity is

not impaired.)

The value of a testing procedure is its expected cost.

il? The expected cost of a testing procedure is

n
‘- g p; 1
.__ H i.l i i
where 1i is the path length to object Oy i.e., the number of

= tests executed to isolate o, as Jetermined by the testing

procedure,

Figure 1 presents a binary identification problem and a

testing procedure with its expected cost.

- In this paper we are concerned with better understanding
how well a well-known algorithm for producing testing procedures
does in generil circumstances. The reason for study in this area
is the general importance and wide applicability of the diagnosis
problem, of which the binary testing problem is an important
restriction. The reader is referred to an excellent survey by

Payne and Preece (9] where references to applications in biology,

EEREER T s A
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medicine, machine fault location and pattern recognition are
given, along with outlines of many approaches to finding good

testing procedures. Understanding the binary testing problem

3
|
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took a big step forward with Garey (2], (4) where it was shown how
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to obtain testing procedures with minimal expected cost by use of
dynamic programming algorithms. However, these dynamic
programming algorithms have running time exponential in the input
size (usually dominated by the listing of the tests) in the wvorst
case. Hyafil and Rivest [6] show that the binary testing problem
is NP-hard (also see Loveland [7]), which (many people believe)
implies that the finding of optimal testing procedures must take
exponential time in the worst case. This focuses attention on
approximation algorithms for finding testing procedures, which
attempt to obtain good, but not always optimal, testing
procedures relatively quickly. Garey and Graham [5] studied the
binary splitting algorithm for fiﬁhing testing procedures for
binary identification problems because this algorithm is the
essence of several algorithms offered by earlier investigators.
It is this study of the performance bounds for the binary

splitting algorithm (defined below) that we extend.
We start with some needed definitions.
If Sc O then let I(S) = {uoai e s}

and let

p(s) - : pio
iex(s)

Also, for test T let

P(M = S p
ier(T)

- co—
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where I(T) = {iloier}.

The binary splitting algorithm is a rule for choosing a next test

to apply at any decision point in the testing procedure. 1If
S€0 and S contains the distinguished object, choose the test Ti

that minimizes
| (p(Sn T,1/p(S)) - 1/2].

The rationale for the binary splitting algorithm may be apparent
to every computer scientist; it embodies the "divide (evenly) and
conquer” approach. Por the binary testing problem with unit cost
tests it maximizes the reduction in uncertainty. Thus it is the

restriction of various entropy-based splitting rules.

The binary splitting algorithm does not always determine
a unique testing procedure because several tests may meet the
selection criterion at a given point. We will consider the class
of all testing procedures meeting the binary splitting algorithm

condition.

The testing procedure of Figqure 1 is a binary splitting
testing procedure. So is the testing procedure of Figure 2,
which is for the same binary identification problem and yields a
better expected cost. Thus we see both that the binary splitting

algorithm need not specify a unique testing procedure and that

such a procedure need not be optimal.
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In Section 2 certain known results are reviewed including
the results of Garey and Graham which our results extend.
Section 3 gives an example due to Garey and Graham that shows how
bad the splitting algorithm can be for arbitrary weights. Our

results follow in Sections 4 and 5.

2. Some Known Results.

It is not possible to give all the known resul¢s ¢+hat
relate to binary testing; a fuller summary appears in Payne and

Preece (9].

A test set 7 is complete iff'(if and only if) for any
set S£ 0 (the set of objects) there is a test T € such that T=S
or O-T=S, If a complete test set is given, there is an algorithm
(essentially the Huffman code algorithm) that determines the
optimal testing procedure for arbitrary object weights, The
algorithm is 1linear in the input string length if the input
object weights are ordered so the task of quickly finding minimum
expected cost testing procedures is solved in this case for the
restricted problem we consider. (When tests have different costs
the computation becomes much more complex, but this problem has

been tackled; see Picard [10].)

The works of Garey ([4]), Garey and Graham [5], Hyafil and
Rivest (6], etc., discussed earlier concern the incomplete test
set problem. It is here that the binary splitting algorithm {is
used. The importance of the work of Garey and Graham [5) is that




they determined a strong bound on how poorly the binary splitting
testing procedures could perform relative to the optimal testing
procedure when the object weights are equal. Intuition and
experience with specific problems led most knowledgeable people
to believe that the splitting algorithm would always produce
good, if not perfect, resultg, especially for the equal object
weight case. We shall state the results of Garey and Graham and,
in the following sections, pursue the same question when the
object weights are arbitrary. There the results perhaps are as
surprising as the Garey and Graham results for the equal object

weight problems.

v

Given a binary identification problem with (an
incomplete) test set 7 of unit cost tests, let Kopt denote the
expected cost of an optimal testing procedure, let Kt denote the
expected cost of the lowest cost binary splitting procedure and
let K' denote the expected cost of the worst (highest) cost

binary splitting procedure.

The following results are proven in Garey and Graham ([S].

We write log n for logzn.

Theorem 1 (Garey and Graham). There exists a binary
identification problem of n objects with equal object weights

such that




Theorem 2 (Garey and Grahanm). For any binary identification
problem of n objects with equal object weights, if at most
€ log n tests are required to identify any object in the optimal

testing procedure, then

X' . 2c log n
Kopt.' 1 +1logc + 1log log n

+ 2¢

A lemma used by Garey and Graham to prove Theorem 2 is
stated here also because we will have cause to refer to it. We

use [S| to denote the cardinality of set S.

L4

Lemma (Garey and Graham). For a binary identification problem
with n objects of equal object weights, if for some r,

0 <r < 1/2, test set 7 satisfies the following condition:
for all S<€O such that |S| > 2, there exists T € 7 such that
ris| < IsnT| < (i-n) (s,

then

log n l-r

K' < tYoqti/ey * T
The special case of simply binary identification problems
warrants mention because of the type of test employed. A
singleton test responds positively to precisely one element, in
set notation, T = {oi}. We consider test sets employing

singleton tests later in this paper. A simple identification

e i e e m bt b i |
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problem is a binary identification problem with every test a
singleton test. Because the test set must be adequate an n
object simple identification problem must have n-1 singleton
tests, at least. Por this class of binary identification
problems, a fast algorithm is known for producing optimal test
procedures for arbitrary cost test sets (see Garey {(3]). For a
related rroblem where at most one distinguished object exists,

see Chu [1}.

3. The General Case,

Garey and Graham (private communication) have discovered
that the binary splitting algorithm can perform very badly
relative to the optimal case under arbitrary object weights in
the incomplete test set situation. The following example shows

that there is a family of binary test problems such that

for the n object member of the family. Since all reasonable
testing procedures have expected cost no greater than n-1, this
result is about as bad as could be expected. (A reasonable
testing procedure would eliminate at 1least one object from
consideration with each test s0 no path would have more than n-1

tests,)

Lower Bound on Worst Case (Garey and Graham). For pedigogical
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purposes it is convenient to let n be even, i.e. n=2m+2, m>o0,

and to utilize a parameter € regarded as a small positive real
number.
Object Object weight
%9 1-¢
°2k-i' 1<k<m 2~ (k+1) ¢
Oy + lckem 2~ (k+1) o
O2m+1 27 ¢
Tests '
T, = O universe
Tl = {°2k—1: likim}
T, = {ozk: 1<k<m}
T, = {ol}oz}
T, = {0, 00,54} 3ci<me2

Tn+3 - {°2m+1}

e s A e ek ek g T o e
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We first find an upper bound for Ko Pirst, consider a
path to isolate Og- Assuming % is the distinguished object we
see that Ty then T, then Tae3 eliminates all other candidates and
so defines an isolating path. Every other object can be isolated
within m+]l tests after Tl or Tl or Tz are applied. Thus

(*) K < 3(1-€) + €(m+3)

opt

<4 for € < (m+3)" L <

1YY

*
We now consider a lower bound for K . Every test except

T has weight 1less than 1/2 for sufficiently small €: indeed,

0

U T, < 1/2. Thus the binary splitting algorithm will first
i¥o
choose the test other than To with the largest weight. Test T3

has weight 271

(2-1 - 2-(m+2)) e,

€ whereas tests Tl and T2 have weight

as 1is most easily seen by observing that
T,UT,UT 43 has weight €, that Ty+Ty and Tme3 are disjoint and
that T1 and 'r2 are symmetrical. Let us suppose the test responds
negatively. Then, in like manner, over the set 0 - {ol,oz}, T,
has most weight. Suppose this test result is also negative.
Then we continue in this manner, Thus the binary splitting

algorithm selects, in order, tests T3,T‘,T5,...,Tm+2,T in

m+3
order to isolate 04+ A positive response anywhere along this
path would 1lead to isolating other objects with path length at

least one. Thus

(**) k" > m(1-e)+e

i




> 852(1-e14e

g | >3 forec<1/a, n>s.

=

Putting (*) and (**) together, we have

K - > ?3 for e <=, n> 8,
op

4. Singleton Tests.

In the last section we saw that for arbitrary object
E} weights the relative performance of binary splitting procedures
to optimal procedures can be about as bad as can be contemplated.

In Section 2 we saw that the same ratio K'/K for equal object

opt
weight problems was poorer than expected but nzt nearly so bad.
fl In this section we find an interesting restriction of the
Eé arbitrary object weight problem set where the ratio K'/Kopt has
nearly as good a bound as the equal weight case. The restriction

is that the tést get include all singleton tests.

A test set 7 is singleton complete if all singleton

tests are present in 7 . We shall label the test {°1} by Ty,

1
;4 We recall that here all tests have unit cost and that

¥ log x denotes logzx.

We state the first result.
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Theorem 3. Given a binary identification problem with n
objects, n > 2, weights Pyre«esP, and a singleton complete test
set'Z'. such that some test procedure requires at most ¢ log n

tests to identify any object, then

KXK' . 2c logzn
Kopt-1+logc+Ioglogn

+ 2c log n

The upper bound here is seen to differ from the Garey and
Graham result by the multiple log n., Curiously, this comes not

from the bound on X' but from the lower bound on Ko A minor

pt’
(but important) distinction also is that we 4o not want to
require the optimal test procedure to identify any object in
¢ log n tests but only require some test procedure to have this
property. When arbitrary weights are involved a non-optimal
procedure may have this property when an optimal procedure does -

not.

To oﬁtain this result we use a modification of the lemma

of Garey and Graham stated at the end of Section 2.

Lemma. Given a binary identification problem with n objects,
if there exists an r, 0 < r < 1/2, such that for each SS O with

S| > 2 either

(a) There exists a T, e T such that




P(SAT,,)
e 2

or

(b) There exists a T€ 7 such that

r-p(S) < p(SNT) £ (1-r). p(8S)

then

] 1% n l-r
L r log (1/r) + r

Proof of Lemma.

’

The proof is by induction on n. The result is seen by
inspection to hold for n=1, n=2, and n=3. (Note for n=3 that
K’ < 2.) We show that the lemma holds for each n, > 4. To begin
the induction step proof we may assume that the lemma holds for
all n < ng. Assume the hypotheses of the lemma hold for n, and
i? that the binary splitting algorithm generates a test procedure.
! The first test splits O into S and § of weight p(S) and p(5)
respectively. Ks ( Kg) denotes the 'expected number of tests

required for S(5) by the algorithm.

) We suppose that S and § are determined by condition (a)
13 of the 1lemma and that Tsi is the singleton test such that
é; S =0NT,, and p(S) > 1/2. Here K g =0 because |S| = 1.
;1 ' Therefore,

Nt A b £ VTS b £ 1 x| R S AN il Ll I~ 4 Pt WO D5 D g by mman m eme - - -

e




K < (1-p(S)) (Rgtl) + P(S) = (1-p(S)) Ky + 1.

By the induction hypothesis

K< (1-pts)) el Lo,y 4y

Por 1 < 1/3, we note that l%!.: 2, so

Ia

) | n-1

K212 (T log (1/r)

+ 2) +1

log n l-r
2T log (1/r) YT

for

Por 1/3 < r < 1/2, we show that the result holds

=
iv

=
-

log(n-1) > log 3

Iv

log(1l/r) , for 1/3 < r,

iv

2r log(l/r).

Therefore,

i PSP Ty
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1/2 ;lggéﬂ%%};y 2 1.
Using the induction hypothesis,
k<12 (PR L 18 4
< Fisg e *E

Since the argument is valid for any test procedure generated by

the binary splitting algorithm, the result holds with K!'

replacing K. %

v

The case that condition (b) determines 8 and § follows

exactly the argument in Garey and Graham [5). |}

The proof of Theorem 3 is a variant on the proof of !

Theorem 2 of Graham and Garey.

Proof of Theorem 3.

Consider a binary identification problem satisfying the
theorem hypothesis. We show that the Lemma holds with

I ®* %% TIog n

Por convenience, let A = c log n.
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Let S be any subset of O with |S| > 2, We show that if
condition (b) of the Lemma does not hold then condition (a) must

hold.

Suppose condition (b) fails for r = %K' That is,

PISAT) < 33.p(S) , or

PISAT > (1 - 33) p(S) , a1l me7 .

If at most JA/] (the integral part of A} tests are then applied in
any order, and all get appropriate responses, we can have a set

S, remaining such that

A

p(S,) > p(S)/2.

SA must be a singleton set for otherwise the hypothesis is
violated that every object is identifiable within A tests by some
testing procedure. But then there exists a singleton test Tsi

such that

P(SNT ) > p(S)/2

which 1is condition (a) of the Lemma. Thus the Lemma is

applicable under the theorem hypotheses.

Applying the Lemma with r = 1/(2¢c log n) we get
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2
2c log'n
K' < 737 5g c+log Yoo n * 2clogn -1

Since we know that K . > 1 we have our result. [J

pt

In the proof of Theorem 3 we made a careful analysis of
K' but used the immediately obvious lower bound of 1 for Kopt’
We see by example that there is a class of binary identification
'ptoblens that satisfy the conditions of Theorem 3 for which
Kopt < 2 regardless of the number of objects in O. Thus the
lower bound cannot be improved. (It is clear that for this class
the ratio K'/Ropt is not close to the bound of Theorem 3. We
consider this after stating the example,)

Exanple: The binary identification problems given here satisfy

the hypotheses of Theorenm 3 with c = 1+€(n), vhere

lim - 1
n-=>p €(n) = 0, and have Kopt < 2.

i

Consider 0 = {0y,...,0.} with p, = 277,1 < i < n-1, and

P, = 2=(r=1) " any possible tests exist.

The potentially complete binary tree (where the minimum
and maximum path 1lengths to leaves differ by at most one) is a
possible, but non-optimal, testing procedure where every object
is identifiable using [ log n ] tests. (Here [ m |= the least

integer not less than m.) The expected cost here is O{log n).

In Pigure 3 we present an alternate procedure with much

lower (indeed optimal) expected cost. This is the testing
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procedure that is found by the binary splitting algorithm. The
tree is long and thin (we will call it a vine; see next section)
but this allows the larger weights to get closer to the root
which can often result in the lowest expected cost. Por this

testing procedure we have

n-1 .
Ke<( £ 274 & (n-n27PD) ¢ 5,
i=]
Thus Kopt < 2, uniformly in n.

5. Vine Testing Procedures.

*

The binary identification problem considered at the end
of the last section points up a weakness of Theorem 3. There are
binary identification problems where the optimal testing

procedure has a 1long and "thin” decision tree which leads to a

very small expected cost. The binary splitting algorithm often

finds such a testing procedure which means that the bound given I

by Theorem 3 érossly overestimates the ratio x'/Kopt (1f one is
even fortunate enough to satisfy the "reachability®" hypothesis).
In this gsection we prove a theorem that gives another upper bound
on the expected cost for the binary splitting testing procedures.

This bound is particularly useful in those cases where Theorem 3

is least useful, namely, when the optimal testing procedure has a

long and thin decision tree.
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The theorem also leads one to conjecture that Theorem 3
is not a strong upper bound because the binary identification

problems where Ko < constant regardless of problem size are

pt
seen to have upper bounds on K' well below that given by Theorem
3. (We conjecture that the upper bound for K'/Ropt for binary

identification problens with arbitrary object weights and

singleton .complete test sets is the same as the equal object

weight case established by Garey and Graham,)

The theorem also has some intrinsic interest as a theorem

on weighted binary trees.

The testing procedures we stud} here are vine procedures.
A vine is a binary tree where all interior nodes lie on one
branch, (We observe that for decision trees all interior nodes
have two sons.) The tree of Figure 3 is a vine. Por a vine each
interior node is adjacent to (at least) one leaf node. A vine
procedure is a testing procedure whose decision tree is a vine.

An optimal vine procedure is a vine procedure such that if

wy and wj are weights that label leaves,. and wy > "j' then the v,

leaf is closer to the root than is the wj leaf.

A binary identification problem with a singleton complete
test set always has an optimal vine testing procedure, although
many times the procedure may have relatively high expected cost.
However, we have noted that when the object weights are quite
skewed the optimal vine procedure can be of very 1low expected

cost. It would be nice to relate the vine procedure to the
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binary splitting procedures, especially as follows: the optimal
vine procedure expected cost (Kv) and any binary splitting
procedure expected cost (KBS) satisfy KBS < Kv. Onfortunately,
this does not always hold as Figure 4 shows us. BHowever, this is
the nature of the result we seek since this would give a good
bound on binary splitting procedures when the best testing

procedures have long and thin decision trees.

Although we cannot realize Kyg < Ky, we are able to show
that matters do not get worse than is suggested by the example of

Figure 4.

’

Theorem 4. For any binary identification problem where the test
set I contains all singleton tests and for any binary splitting

testing procedure for this problem we have

Kps < Ky + 1

where KBS is the expected cost for the binary splitting procedure

and Kv is the expected cost for the optimal vine procedure.
In particular, for any binary identification problem with
a singleton complete test set we have K' < xv + 1, where K' is

the worst case expected cost for binary splitting procedures.

Proof. The proof is presented entirely in terms of weighted

binary trees except for one key property of BS trees we prove
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below. Because every testing procedure is represented by a
decision tree, we may assume we are given a BS tree 285 and we
will show that the theorem statement holds by producing an

(optimal) vine tree T, such that K, < K, + 1.

Before we can state the key property pertaining to BS
trees we require some definitions. For any weighted binary tree
(such that each interior node has two subtrees) one can choose a
leaf 1labeled by w and consider the path of (zero or more)
interior nodes between the leaf and the root of the binary tree
(the w-path). Each interior node on the w-path has another

subtree attached to the node, a secondary subtree of the w-path,

(In Figure 4, the .49-path on the BS procedure tree has two
secondary subtrees with one and seven leaves respectively.) We

define the leaf weight of a weighted binary tree to be the sum of

the weights of leaves of the tree.

We prove the following fact regarding BS trees; this is

the only property specific to BS trees that we need.

Pact. Por any BS tree ng and dny weight w labeling a

leaf of '.‘-r-BS ’

possibly the subtree closest to the 1leaf, has leaf weight at

every secondary subtrée of the w-path, except

least as large as weight w.

We prove the Fact by assuming it €false and deriving a
contradiction, Let o denote a node on the w-path where the

secondary tree has leaf weight 8, s<w, and  is not adjacent ¢to
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the leaf (labeled) w. Node  is the root of a tree; let the leaf
weight of this tree be t. t is the weight that is "split up” at
node of. We must have w < t/2 or else the optimal split is (w,t-
w) and the node w is one subtree, violating our supposition
that  is not adjacent to node w. But if ¢t/2 >w > s, then
(w,t-w) is closer to (1/2 , 1/2) than is (s,t-s) and would be
favored by the binary splitting algorithm. But then one subtree
to d again would be node w, making nodes w and o adjacent, which
violates our supposition. Thus s<w is impossible and the Pact is

proven,

The proof of the theorem proceeds by building the given

tree

gas and also the corresponding gv in stages. We define

trees To:Tpg1+Tng2r **r Insn = Tps "9 Loelyyeeooolyq = Iy where

I, is a single node tree with weight 1, and T, and T, are the

trees of the binary splitting procedure and the optimal vine
procedure respecti :ly. The proof is by induction on the number

of stages.

The proof is better understood if we prove a restricted
case first, We shall assume that for the given ZBS which we must
reconstruct that there is no w-path with a secondary subtree

whose leaf weight is 1less than w, We shall gee that in this

case that < , for all i, 1 < i < n, and < .
Kasi < Kyy £1s Kps < Ky

To define 2881 and gVI we begin with 20. Let v, be the

largest weight in $Bs and find the wl—path in 355‘ Consider the
vine defined by this wl-path where the secondary subtrees in QBS
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are replaced by single node subtrees with weight equal to the
leaf weight of the secondary subtree it replaces. We call the
single node subtrees secondary nodes for the w-path. (For the BS
tree of Pigure 4 the secondary nodes for the .49-path have
weights .0l and .5 assigned respectively. See Figure 5.) The

vine Just defined is gssland §V1‘ Let bn....,b1r1 (where
ry 2 1) be the secondary nodes created in the vine defined above,

enumerating from the leaf vy Thus here w,bll,...,b are all

lt1

the leaf weights (i.e., labels) for and T

Zps1 Tvi-

We now construct gasz and gvz. To construct $BSZ from

Tasy’ Zss

the wz-path in EBS’ 1f Wy = Wy then v, = bn. , some k, is

let v, be the next largest weight in after V. FPind
possible and then 2882 = gBSl’ Othervise, the first portion of
the wz-path from the leaf is contained in a secondary subtree of
the wl-path of Tag* Let blk label the secondary node in Tas1
associated with the secondary subtree containing part of the
wz—path. We form 3852 from ;le by replacing node blk by the
vine that combletes the wz-path in gasz. This vine has secondary
gas along the
wz—path where it is distinct from the wl-path. (See Figure 5 for

nodes b, ,...,b to replace secondary'subtrees in
21 2:2

an {illustration of 3851'3882' and._‘g"v2 for the BS tree of Pigure
4.)

To create $v2 from $v1 we expand blk in the identical way
except we must first move (the label) blk to the node (labeled)

w, 80 that the expansion of node By to a vine results in another
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vine., We interchange (labels) w and b1k to achieve this move.
By the Pact (and our simplification assumption) blk > w, 8o the
expected cost K cannot be decreased by this move, since there is
a net weight change farther away from the root ("down the tree”)
if any change occurs. Now replace blk by the same vine replacing

b in the creation of 3382. This defines gvz. We see that

1k
Kpgo < Ky,e (Recall that K., < K, since Tas1 ™ I )

The general outline should be clear. Tas is being
"reconstructed” by expanding secondary nodes so that the subtrees
are gradually rebuilt, The tree 3V is gradually built by
appending all the vines used in inte;pediate construction of 338
at the "end" of a previous vine, to preserve "vinehood”. The

general form for the restricted case can now be presented.

th

To construct T, from 335(1_1), locate the i largest

weight on Ins® If Wy already labels a secondary node bjk in

so that the wi-path of T

pg 18 present in Tes(i-1) then

2Bs (1-1)
gBSi '.gBS(i-l) and zvi = Ty (i-1y° Otherwise, the first portion
of the wi-path must replace the node bjk where the wi-path joins
the portion already present in 388(1-1)’ Again, secondary nodes
with appropriate weights represent the secondary subtrees of the
wi-path not yet expanded, This defines $BSi' To define gvi.

is moved to replace w,_ , at one of the farthest leaves

label bjk
of gV(i-l)' However, rather than placing Vi1 in the bjk

location, we bump up the weights. That is, the closest weight v,
labeling a node farther from the root than (i.e. "below") bjk is
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moved to the bjk location. The L location now vacant is
replaced by the closest weight below the v, location. This
continues and finally weight w, , moves to the vacant location
left for it. Thus, we observe that if w_and w

a b
> Vo then v, remains closer to the root then

label nodes,
Wy, in all T, . Finally, replace bjk at a "bottom” leaf by the

vine added to T

Tpg(i-1) 2t P

jk? this defines T,,.

We now show that Kpgi < Kyyr assuming that
KBS(i-l) < KV(i-l) by induction hypothesis. Since the expected
cost is a sum of components, each component the product of a
weight and its distance from the rogt, any weight displaced an
equal amount in creating SBSi and 3v1 will have equal effect on
KBS(i-l) and KV(i-l)' thus preserving the inequality. Thus the
replacement of bjk by the same vine in the creation of
EBSi and IVi pregserves the inequality, We must only note that
moving bjk to the Wil location and bumping up weights preserves

the inequality. But w < w » all q < i, also bjk > vy (by

+l -

the Fact) and.wq below bj: in Ivji-l) implies g>j. It follows
that “"bumping up" results in no larger negative effect on the
expected cost than if wj were moved from the Vial location up to
the bjk location. Moving bjk down to the w,_, location at least
offsets this negative effect so Ky is not decreased by this

action. Thus Ky, < K, holds.

We now consider the unrestricted case where the secondary

subtree on a w-path closest to node w may have leaf weight less

A i iantiind = i PSRN L6 A TUR K 1y - A ne s . [
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than w. If a vi-path in gns has such a secondary subtree wve
shall call it the w,- runt (or, simply, the runt), denote its
leaf weight by a;, and exclude it in our notation bil""'biri
for secondary nodes of the wi-path. This means bil denotes the
leaf weight of the closest secondary subtree to v such that

biy 2 v The runt is too small to stand on its own; it will

(Riiraacaniii MANENEEL A Taky tte L o
e e w1 e R ——

usually be associated with another node and we proceed as before

as much as possible.

¥ | The change is easy when constructing T from

Iasi Bs(i-1)°
-path has a runt, then attach it to the v node, which

If the v

then has weight w; + a, = w',;. If no runt exists we let a, =0

for convenience. gBSi then has a w'i-path with bil,....biri as
before but bij > "'i may not hold. 1If the w'1-path requires the
expansion of a wj-runt, some j<i, in gBS(i-l) then replace the

‘i "j node by an (unlabeled) node with two sons, labeled 'j and aj

. respectively, and then expand the ‘j node as one would a bjk

node. ﬂ

We now consider the creation of Ivi from 3V(i-1)’ There

are three cases vwhich we enumerate. 1In case (ii) we shall see

that an aj may be shifted from w'j to bjl' creating weights
wj and b'jl = bjl + aj. respectively. Thus, in 3V(i-1) wve must

ral

g it L3

+ ‘j‘ Also weights of form

i

k
'j + a, can appear, as will be seen.

also consider b'jk of form bj

A

;; The following possibilities arise in EV(i—l)' Recall

that the expansion of a node to a vine is determined by the




T AT L L NDEC—

Ot £
[E g e

o AR
J o

29

expansion that occurs to create T,o,.

Case (i). The "node" a; 1 needs to be expanded. Replace
node w'; , by a node with sons w,_, and a;_, and then expand a5.1

in imitation of the expansion that creates T....

Case (ii). A node bjk needs to be expanded. Since Vio1e
rather than w', ,, is to be “"bumped up", move a;_, to b(i-l)l to

create b'(i-l)l as described earlier. (Note that the distance of

a;_, to the root is unchanged so the expected cost is unaffected

by this move.) Now move bjk to the Wiy node and bump up the w's
L}

below bjk's old location, as before. If b 4k is bjk + aj then do

not move aj. After "bumping up®", the 4814 b'jk node will have

weight w_ + aj, for some s.

Case (iii). A "node" aj, some j<i-l, needs to be
expanded. The aj is detached from its associate bjk or w,, the
latter left in place, and 3y is moved down the vine. The w, ,
node 1is replaced by a node with sons wi_land ’j' Then ‘j is

expanded.

We now establish the relationsip between the expected
costs of KBSk and KVk’ The 1ineguality that we actually show
holds is

* Kpsk < Kyx * £

w
hem, O

k
for Hks{l,...,n}, for all k, 1 < k < n. It is quickly seen from

our earlier argument that (*) holds for k=]l with '1 = 0, We
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argue the induction step from i-1 to i, following the cases 3just
enumerated, We have by induction hypothesis that (*) holds for
k-i-ln

When Case (i) occurs for T,,, Tpgs; has been created by
the same expansion applied to 358(1-1) so the incremental change
to Kpg(i-1) and Kv(i-1) is exactly the same. Thus (*) holds for
k=i with B,_, = H,.

When Case (ii) occurs, the shift of a; , to b1t
causes no consequences to the expected value and the remainder of
the action is as for the restricted case considered earlier.

’

Thus (*) holds for k=i with H, , = H,;.

When Case (iii) occurs, weight aj is shifted down the
vine which increases the expected value Kvt without affecting

K This is fine. However, in T

BSi° =BS(i-1)
when split to two sons, v, and ‘j' their path length increases by

‘j is part of w'j and

one and so both weights are added (once) to KBS(i-l)' In

modifying (1_1), via is given an increased path length of one

Iy
and aj has a path length increase of at ieast one, But wj > Wiy

3 in general so the increase to Kpg(i-1) San exceed the increase to

KV(i-l) by an amount approaching "j' if Vi is very small. To

3 2Oy
O SO S

preserve the inequality we must add 'j to the right hand side of

&~

(*). With this accommodation we see that (*) holds for k=i for

this case with A, = H,_, + {3}.

R S
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This concludes the cases we must consider, and (*) has
been shown to hold in particular for k=n, But

Kag * Kpgp 2Md Ky = Ko It follows that K, : K, + 1 since the

sum of the weights is 1. [
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Og 1 0 0 0 0 1 0 0
a testing procedure T ) Test set = {Tl,...,T7}
7

expected cost: K= 2(.3 + .1 + .3) + 3(.2 + .1)

= 2(.7) + 3(.3)

= 2.3

A binary identification problem with one testing procedure solution

Figure 1
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expected cost: K= 2(.3+ .3+ .2) + 3(.1 + .1)

= 2(.8) + 3(.2)

= 2.2

An alternate testing procedure for the binary
identification problem of Figure 1.

Figure 2




2= (n-2)

2—(n-1) 2‘(“‘1) ’

A testing procedure with expected cost less than 2.

Figure 3
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Objects 0 0
1 2 3
] |

{
Weights: 49 0 .24 ! 12 .06 .05 .011 .01] .01 .01

Vine procedure

K; = .49 + 2(.24) + 3(.12)
+ 4(.06) + 5(.05)
+ (6 +7 + 8+ 8)(.01)
= 2.11

Binary splitting procedure
Kpg = 2(.49 + .01) +
3(.24 + .01) +
40,12 + .01) +
4(.05) +
5(.06 + .01)
= 2,82

.05

A binary identification problem with nine objects.
Figure 4
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Construction stages associated with the tree T
=BS
of Figure 4.
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